

CS/IT Honours Project

Final Paper 2023

Title:

Enhancing The Interactivity and Visualization Features of The

Online Python Tutor Web Application

Author:
Siviwe Qolohle

Project Abbreviation:
PyCodEx

Supervisor(s):

Mr Gary Stewart

Category Min Max Chosen

Requirement Analysis and Design 0 20 15

Theoretical Analysis 0 25 0

Experiment Design and Execution 0 20 15

System Development and Implementation 0 20 15

Results, Findings and Conclusions 10 20 15

Aim Formulation and Background Work 10 15 10

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10

Total marks 80 60

DEPARTMENT OF COMPUTER SCIENCE

Enhancing a The Interactivity and Visualization Features of The

Online Python Tutor Web Application

ABSTRACT
Grasping the basics of programming is challenging for first years

who have no prior experience to the skill. Tools which allow users

to improve their programming skills do exist, these tools are

however not very beginner friendly. They cannot be seen as being

beginner friendly because they are mainly practicing tools for

individuals who are already skilled at programming, rather than

tools that focus on assisting users in grasping the basics of

programming. These tools are often not comprehensive enough

and it may take a while for the user to fully grasp how they operate.

This paper discusses the enhancement of the Online Python Tutor

web application, to make it more beginner friendly. Online Python

Tutor is web application that allows students to visualize any block

of code, to improve their understanding of how each line of code

affects the overall code and output. This paper discusses the visual

and interactivity enhancements that have been made to make

Online Python Tutor more beginner friendly. The effectiveness of

the features was tested with first-year Computer Science students.

From the results, the usage of colour to link a line of code in the

editor, with content in the visualization tool, and explanations in

the interactivity tool, proved to be helpful to students. The

interactivity feature proved to be more helpful than the

visualization features. This is partly because users saw the feature

as one that could assist in debugging.

1 INTRODUCTION AND MOTIVATION

Introductory computer science courses tend to have high failure

rates at tertiary institutions [1]. Many students struggle with

programming upon their arrival at tertiary institutions as many of

them arrive with no prior exposure to the skill. Initially the subject

can come across as being too abstract for beginners. Grasping the

programming terminologies can also be difficult for beginners.

With more careers incorporating programming into their day-to-

day activities, universities are beginning to incorporate the skill into

the curricula of many different degrees across faculties [1, 15].

This increases the urgency of finding a way to smoothen students’

experiences when learning how to program. Struggling to initially

grasp the basics of the skill can have unexpected effects on a

student’s experience at university. Struggling with the course can

result in forced extension of students’ degrees. Some students

arrive at university without the intention of enrolling into an

extended version of a subject but struggling to keep up with the

pace of a single semester computer science course automatically

forces them to extend their degree by a year. The high failure rates

reflect students’ inability to grasp the fundamental topics of

programming.

1.1 Visualisation

Programming greatly challenges an individual’s problem solving

and abstract thinking skills [6]. Visualizations assist in making

programming less abstract and allows one to form mental images

of complex systems and how their components interact [7, 8, 9].

Visualisation allows students to see how variables are affected by

a sequence of instructions [2, 14]. Incorporating colour into code

visualisation tools is helpful. Past studies have found that the

incorporation of colour has a positive impact on a learner’s learning

experience. The studies found that incorporating colour into

learning material assists in grasping a learners’ attention and that

colours are processed automatically [19].

When being taught how to program, static tools are often used,

these tools include images, written explanations in lecture slides

and textbooks. Static tools make it difficult for beginners to grasp

the basics of programming, highlighting the urgency for dynamic

teaching tools [16]. The need for dynamic teaching tools is not only

urgent in introductory programming courses, but it is needed

throughout one’s programming degree. When learning different

programming techniques in CSC3003S such a ‘brute force’ and

‘dynamic programming’ dynamic teaching tools are crucial for

students to fully grasp the steps that need to be taken for each

programming technique. Topics such as searching and sorting

algorithms need to be fully understood by all Computer Science

students [16]. For students to understand these topics, dynamic

teaching methods need to be utilized.

Past studies have found that the incorporation of colour has a

positive impact on a learner’s learning experience. The studies

found that incorporating colour into learning material assists in

Siviwe Qolohle
Department Of Computer Science

University of Cape Town

Cape Town, Western Cape

qlhsiv001@myuct.ac.za

grasping a learners’ attention. Studies have also found that colours

are processed automatically [19].

1.2 Interactivity

When learning how to program, interactivity plays a crucial role.

There is a vast difference between attending lectures where one is

shown pre-constructed solutions to problems, and physically

coding one’s own solution to a problem. A first-year student may

be very consistent when it comes to attending their computer

science courses and engaging with their lecturer but may struggle

greatly when it comes to the coding assignment. This highlights

the importance of interactivity when being taught how to code.

Interactive code teaching applications have proven to be very

successful when it comes to teaching beginners [5]. In experiments

comparing the effectiveness of focusing on visualisation when it

comes to programming, with the effectiveness of focusing on

interactivity, interactivity has been proven to be more successful

[2]. Students have been found to learn and understand

programming better when completing practical assessments [4].

This highlights the importance of increasing the time students

spend physically coding, rather learning the theory. When it comes

to being taught about programming, some concepts only make

sense when one is actively programming, as it automatically forces

one to self-teach some programming techniques and terminologies.

It has been found that learners who passively make use of

visualizations to learn are outperformed by learners actively

engaging with the visualizations [10]. One of the ways in which

students have been engaging with the visualizations is by making

predictions of what changes will occur in the visualization after a

change in the code [11]. A common practice that is viewed as being

effective when teaching programming is execution history. This is

because students often forget what happened in the previous lines

of their code [10]. Another common practice which is viewed as

being effective when teaching students how to code is supporting

flexible execution control. This allows the user to proceed

forwards and backwards when analyzing their code [10]. allowing

users to enter their own input into an editor is also viewed as being

effective as it results in students engaging more with the

visualizations [10]. Having questions testing students’

understanding is also recommended as it allows students to reflect

on the visualization that they have such observed to check whether

they truly understand it [10]. It is also important to include

explanations within the visualizations. This assists students in

better understanding the visualizations [10].

Engagement Taxonomy was introduced by Naps et al [10], which

consists of six different levels of interactivity respective to a

visualization [6]. The six levels are ‘No Viewing’, ‘Viewing’,

‘Responding’, ‘Changing’, ‘Constructing’ and ‘presenting’ [10].

At each step from the No Viewing level to the Presenting level, the

interaction with the visualization increases [10].

When it comes to the Engagement Taxonomy, each level in the

taxonomy (after ‘No viewing’) does not necessarily exist on its own

[10]. There are multiple combinations of how the levels can

interact with each other to improve the learner’s understanding.

For example, a feature can be designed where the Changing level

is combined with Responding level [10]. The Viewing level is

present in each of the combinations [10]. The third level is

Responding. This involves answering questions about the

visualization [10]. These questions including Prediction (how the

visualization gets affected by a line of code), coding (matching the

code to the correct visualization), efficiency analysis of the code,

and finally, debugging (checking whether errors are present in the

given code) [10]. The responding level requires the user to

constantly look back and reanalyze the code, which assists in

improving their understanding [10]. The next level is Changing.

Changing includes allowing the user to edit the code and provide

their own inputs [10]. The next level is Constructing. This level

involves constructing your own visualization [10]. The final level

is Presenting. This level consists of the learner presenting a

visualization to a group of people for discussion and feedback [10].

This could assist in deepening one’s understanding of the

visualization by getting an idea of other people’s interpretation of

the visualization. The visualization doesn’t necessarily have to

belong to the student [10].

1.3 Online Python Tutor

Figure 1: Engagement Taxonomy [10]

This project builds upon an existing web application known as

Online Python Tutor (OPT). OPT (see figure 2) is a platform that

allows individuals to code in an editor like other well-known IDEs

however OPT allows students to visualize every step of the

program [12]. OPT is one of two active code visualisation tools

which allow users code in python (the other being UUhistle).

However, from the two, OPT is the only web-based application that

does not need to be downloaded prior to use [12]. OPT is also

easily accessible, one must just enter a URL. OPT has been used

in introductory Computer Science courses at multiple universities

[12]. These universities include MIT, UC Berkley, University of

Washington, and the University of Waterloo [12]. In 2013, it was

recorded that over 30,000 individuals used OPT per month.

Embedding the web application into other websites is also quite

simple. The application was created to move visualisations of code

from hand-drawn visualisations on whiteboards to automatically

generated digital visualisations. The backend is mainly coded with

Python and the frontend is coded using HTML, JavaScript, and

CSS. D3 and jsPlumb are the two main JavaScript libraries that are

used. jsPlumb is used for the arrows and D3 is used for mapping

the trace elements to their corresponding HTML elements. The

main ways in which the application is used is firstly as an aid when

teaching in a classroom setting; secondly, it is embedded in digital

textbooks and thirdly is it used by students for studying or

practising [12].

OPT has been recognized to help with topics such as recursion,

return values in functions, understanding the flow of a block of

code, knowing the lifespan of local variables as well as

understanding the referencing of variables. Some students have

viewed the diagrams as being very similar to the diagrams they

physically draw to understand the structure of their code [12]. The

error messages are seen as being easy for beginners to understand

compared to the standard python error messages. The web

application is easy to augment and has been augmented multiple

times. The application has been merged into digital textbooks

making it easy for the reader to put the content they are learning

into practice. Some of the digital textbooks are structured in such

a way that the user can interact with the code that is displayed in

the textbook. A textbook that has made use of this feature is How

to Think Like a Computer Scientist: Interactive Edition. The

textbook is widely used, highlighting the importance of

interactivity and additional practicing tools in introductory

programming courses [12].

1.4 Related Work

UUhistle is a program written in Java, that has both a

predominantly visual mode and interactive mode (see figure 3)

[13]. The program can be run on its own or on the web. The

predominantly visual mode is referred to as Controlled Viewing

and it allows the user to observe as the program executes showing

Figure 2: Online Python Tutor

the different steps the program follows. The code is displayed on

the left (with the current line highlighted). On the right side are the

components which make up the program, these components include

the classes, variables, functions, and operators. As each line is

executed, the changes to variables are visualized as well as the steps

taken when a method is called by a variable. The changes made by

each transition to the next line are displayed on the right. In the

Controlled Viewing state, the user can also make use of buttons

such as Stop, Rewind, Undo and Next Step as the lines execute.

The second mode of UUhistle is a Visual Program Simulation

(VPS) (see figure 4) [13]. In this mode, the student takes on the

role of the computer. The objective of this mode is to give the

student a deeper understanding of what the computer does when a

program is run. In other words, in the VPS mode, the student

manually does the changes observed on the right-hand side of the

Controlled Viewing (figure 1) mode in each line of code. When a

method is created, the user is expected to store it in memory; when

the method is called by a variable, it is the user’s responsibility to

drag the function and enter the required parameter (as with the

Controlled Viewing mode, the stored method is displayed on the

right side of the screen).

2 SYSTEM DESIGN
The processes that were followed throughout the project to make

the enhancements to Online Python Tutor. These processes were

both the Waterfall Model as well as the Agile development Model.

2.1 Requirements

The aim of the project is to make Online Python Tutor more

beginner friendly by increasing interactivity and improving the

visualization features of the application. When it comes to

visualization, previous papers have highlighted programming being

seen as being too abstract, and the goal of the visualization feature

is to reduce this. The existing application does consist of a detailed

visualization system, but beginners may struggle to grasp the basics

of the system at first. To make changes in the visualization system

more noticeable, highlighting has been introduced where the

variable being referred to in a specific line of code is highlighted.

in both the editor and the visualization system. One of papers

discussed above mention the importance of having explanations

when teaching programming. As a result of this, explanations are

given to the user when python keywords are typed into the editor

(see Appendix A.3).

For the interactivity section of the project a variable testing system

has been introduced. A paper discussed above highlighted the

importance of having questions when introducing an Interactivity

feature. The questions encourage the user to reflect on the code and

determine whether they fully understand each of steps of the code.

The way in which the feature works is that the user enters a block

code, and the user is tested on whether they understand how a

variable is affected in each line. As the user steps through the code,

they are asked to predict which variable will be changed or

introduced as well as what the new value of the variable is. There

is an arrow which points to the line that the user must.

See Appendix A.2 for specific requirements.

3 IMPLEMENTATIONS

The way in which the frontend interacts with the backend is that the

code entered in the editor is converted into a string and is sent to

the backend with the use of a Get Request. In the backend, an

execution trace is produced and is sent to the frontend in a JSON

format. To implement the interactivity and visualisation features,

the frontend was mainly edited (see Appendix B1). To make the

changes, existing JavaScript, HTML and CSS codes were edited.

The main JavaScript program that is used for Online Python Tutor

is pytutor.js and the main CSS program used is pytutor.css. The

HTML file used for the live version of Online Python Tutor is

live.html. The main program to which changes were made is the

opt-live.js program. This is the JavaScript file that is used to control

the frontend of the live version of Online Python Tutor. The way

in which this program was edited for the Interactivity feature was

through synchronizing the changing variable data with the ‘First’,

‘Forward’, ‘Back’ and ‘Last’ steps (See figure 4). The way in

which the changes at each line of code of are determined is by

Figure 4: Online Python Tutor Navigation Buttons

writing the code typed into the editor, into a JSON file and

extracting the global variables called in each line as well as the

value of the variable (see Appendix B.2). This data gets written

into another JSON file which serves as input into the opt-live.js file.

The way in which the input is used in the opt-live.js file as is that

the index in the dictionary containing the global variables and their

values is monitored. The index in the dictionary corresponds with

the current line in the editor. The index corresponds with each of

the step buttons stated above. This means that if the user presses

‘Forward’ the index is incremented by one in the dictionary and if

‘First’ is pressed the index value becomes zero. To ensure that the

predicted answer for line of code is not displayed at the same time

at which the user is expected to make the prediction, the predicted

solution value is always one index ahead of the index of the current

line being executed. Determining the prediction line is made

simple by the fact that the existing Online Python Tutor editor

points to the line that will be executed next with a red arrow. When

the user presses the forward button the solution for the previous line

is provided. Although the changes can be seen in the visualisation

tool, a comprehensive solution is provided in the interactivity

feature (see Appendix A.1 for Interactivity feature with variable

highlighting).

The visualization and interactivity feature have a similar

foundation. The visualisation feature also needs to be synchronized

with the buttons discussed above as well as with the line that is

currently being executed in the editor. As the user steps through

the code, the variable that has a value that is currently being

changed is highlighted in the visualization tool. This is done to

assist the student in navigating through the visualisation tool with

ease. The variable that gets highlighted depends on the variable in

dictionary being pointed to when the given button (stated above) is

pressed. The only backend programs that these changes make use

of are the bottle_server.py program (see Appendix A.1 for

Interactivity feature with variable highlighting).

4 TESTING AND EVALUATION

The root question of the Testing and Evaluation sections is: “Do the

visual and interactivity enhancements of Online Python Tutor assist

in making the web application beginner friendly?”. There were

three components to the testing process, namely the Overall

Application Testing, Unit Testing and User Testing. When testing

a web application, one must mainly focus ‘correctness’, ‘security’

and ‘quality’ [17]. Seeing that Online Python Tutor is open source,

testing the security of the web application is not as crucial. When

testing the correctness and quality, the testing methods discussed

below were used. The testing process followed an agile

development model. The Agile Development model ensured that

project was on the right path towards meeting the requirements.

Integration testing as well as well Unit testing was applied.

Frequent meetings with the supervisor also fell into the category of

Agile Development. Due to limited time, testing with participants

was only completed once.

4.1.1. Overall Application Testing Integration Testing was

completed. This tested whether all additional features did not

interfere affect the functioning of the original application. When

taking the user step by step through each line of code, the current

line in the editor needs to correspond with the change in the

visualisation tool. This also implies that the highlighted line

number in the editor gutter must correspond with the highlighted

variable in the code visualisation tool (if the value of a variable has

changed). The steps in the in the editor, as well as the

corresponding changes in the visualisation tool also need to merge

with the Interactivity tool. This is done is by testing whether the

highlighted line in the editor corresponds with the prediction

solution in the Interactivity tool.

4.1.2 Unit Testing. This is the independent testing of each

component of the application [18]. When doing this, the

application needs to be broken up into as many separate

components as possible. When performing unit testing on the

editor, it was tested whether highlighting one variable, results in all

of occurrences of variable getting highlighted. It was tested that

when stepping through the code, the gutter was highlighted in the

position of that line. The following unit test was performed on the

keywords within the editor. It was determined whether when

typing a keyword (such as ‘for’ or ‘print’), an explanation of word

is displayed. Once a new component was added to web application,

the entire application was tested to determine whether the overall

application continues to run smoothly with the addition of the new

component.

4.1 User Testing

This testing process included the participants who we recruited.

The testing was conducted in two phases. In the first phase users

were initially observed as the navigated throughout the application,

thereafter they were asked to complete certain tasks. The second

phase consisted of users completing a survey which allowed us to

determine the effectiveness and understandability of the

enhancements.

4.1.1 Participants. The participants for the project were CSC1010H

and CSC1011H students. This course is an introductory

programming course that is usually completed by first-year

students. Seeing that we are currently in the second semester,

participants were familiar with the basics of programming. There

was total of 10 participants.

4.1.2 Testing Procedure. Students were recruited at a CSC1010H

lecture. They were informed of the purpose and background of the

project. They were also informed of the incentive to participate,

which was a R250 Takealot voucher. The students who signed

chose specific dates and times. the testing process ran for a week.

Before the testing process the students were given a Student Affairs

approved consent form to complete. The first step of the testing

process was observing the students as they navigated through the

application. at first, we ask the participants to interact with

application without giving them any information. Many students

enquired whether there was a manual or introduction section. The

students navigated through the interactivity and visualisation

features. For the visual feature, the students were asked a enter

code and interact with the buttons and slider to see the effects of

the affordances on the code. Thereafter, the students we asked to

make use of the visualisation feature. This was the only instruction

given seeing that the feature had its own instructions. After their

interactions with the applications, the students were asked to

complete a survey rated the effectiveness, structure, functioning

and helpfulness of each feature as well as the overall web

application (see Appendix C1).

4.2 Evaluation of Testing Methods

4.2.1 Reliability of Result. Seeing that the number of participants

was very low, the results may not be as reliable. The project only

had 10 participants. Another issue is that the application has been

designed for beginners, but the testing was done with participants

who understand the basics of programming. The participants the

application was tested on may not find the application as helpful as

beginner who does not know the basis of programming.

5 FINDINGS AND DISCUSSION

When testing the web application, both qualitative and quantitative

testing techniques we used. The qualitative techniques were

observing the participants as they navigated through the

application. Throughout this process, the applicants were given

tasks to complete, and as they were completing those tasks, they

were asked questions to determine their understanding of the

feature they were focusing on. The quantitative testing method was

survey that each participant was asked to complete (see Appendix

C.1 and D.1).

5.1 Findings from Observations

When observing the students, it was found that they were not sure

about how the application works and what exactly they were

expected to do. A student enquired about instructions or a guide

that helped the user navigate through the application. the student

suggested we include an introductory video to assist a new user.

When the first participant started typing the code, they typed a line

of code that accepts input, and they had to be informed that the

enhanced version for this project does not take input. The

following participants were informed prior to typing their code that

the application does not take in input.

When focusing on the visualisation feature the users did not seem

to instantly get the affordances of the ‘First’, ‘Forward’, ‘Back’ and

‘Last’ buttons. The did not interact with the buttons until they were

explained to them. The slider on top of the buttons did not seem to

be visible enough as the students did not notice it. A participant

suggested that I add colour that highlights steps in the slider that

have already been executed in one colour and steps that are yet to

be executed in another colour. The students recommended

enhancing the overall colour for the interface. Students struggled

to initially observe the link between the colour in the editor

indicating the current, and the variable being highlighted.

When it comes to the interactivity feature, the students did pay as

much attention to the ‘Variable Testing’ and assumed that the

instructions were not linked to the web application. They asked a

lot of questions regarding how the feature works (regardless of the

description given above) and struggled to understand the objective

of the feature. A student stated that the feature might be helpful for

a beginner but does not seem necessary for them. The students also

struggled with understanding the marking system for the

interactivity feature.

5.2 Findings from Survey

5.2.1 Visualisation. Initially the participants did not grasp the

purpose behind the changing colours and highlighting within the

editor and visualisation tool. Upon explaining the purpose behind

the feature to the participants, they understood why it had been

implemented and found the feature to be helpful. Some participants

stated that the feature could assist beginners in grasping the effect

of each line of code, on the overall program. This feedback

explains the low ratings for the Understandability of Highlight

Feature and the higher ratings for the Helpfulness of Highlight

Feature.

5.2.2 Description Pop-ups. When testing the features with the

participants, the pop-up descriptions of the python keywords were

displayed within the editor. Many participants complained that the

descriptions were covering their code, making it difficult for them

proceed with their coding. Although the positioning of the pop-ups

was initially not ideal, participants did express that they found them

to be helpful and convenient. This is mainly because, if someone

has not coded in a while, they likely to forget the syntax for the

different python keywords. When one can code in multiple

languages, they are likely to confuse the syntax for one language,

with another. This explains the moderate rating for the Helpfulness

of Pop-ups Explanations. Seeing that the pop-ups were intended to

assist beginners in recalling the syntax keyword, they were written

to be as simple as possible. This explains the high ratings for

Understandability of Pop-ups Descriptions.

5.2.3 Interactivity. The interactivity feature was executed in the

form a Variable Test. The description for and instructions of the

test were written above the test. After reading the description and

instructions, the users were still not aware of the objective of the

test, as well as how to complete the test. After explaining the

objective and instructions, the students were quickly able to grasp

how to use the feature and complete the test. Multiple students

suggested the inclusion of a diagram to make understanding the test

simpler. This explains the moderate rating for the

Comprehensiveness of Interactivity Feature. Many participants

found the testing feature to be helpful, especially for beginners.

Many of them expressed how test would be helpful for debugging

code, hence the high rating for Helpfulness of Interactivity Feature.

The fact that the participants had more than a semester’s worth

experience in programming in python explains the low rating for

the Difficulty of Interactivity Feature.

5.2 Discussion

5.2.1 Reflection of Methods. The evaluation methods did seem to

be effective as we could see the struggles a user would experience

whilst navigating through the application. Further instruction

should have been given prior to simply asking the user to the

interact with the application. Students struggled with a lot of the

terminology and words used in the application. Some words they

struggled with were simple, however in the context of the

application they were not. An example of a word is ‘Step’. The

students did not initially grasp that step implies changing lines. The

same applies for the ‘First’, ‘Forward’, ‘Back’ and ‘Last’ buttons.

The students did not see the corelation between the navigation

buttons and the code. The students frequently hesitated and asked

questions throughout the testing process for each feature. This

implied that the overall web application was not very

comprehensive for someone who has never used it before.

5.2.2 Effectiveness of Visualisation Features. Overall, the students

found the inclusion of the highlighting features to be effective. The

explanations for the keywords were also seen as been helpful. The

main changes that the students desired but could not be

implemented was the explanation of each line of their code. When

comparing the participants’ ratings for the highlighting feature to

their ratings for the pop-up explanations, it appears that there is a

greater need for more comprehensive explanations of each of the

python keywords. This may indicate users’ difficulty in

remembering when to apply a specific keyword or the syntax

associated with the key.

5.2.3 Effectiveness of Interactivity Feature. The main goal of the

feature was to be seen as testing feature however, although it was

seen as testing feature by some, may students view it as being a

debugger. Setting tests where the students are given a block of code

and are expected to predict the changes for each line was discussed.

It was considered because it was brought up that predicting the

changes in each line of your own code may not be as challenging,

since you wrote the code. It was suggested that the feature would

be more challenging if students were being tested with code they

are not familiar with. The new testing feature would be expected

to have ‘hard’, ‘medium’ and ‘easy’ levels.

5.2.4 Target Users. During the user testing, when interacting with

and being asked about the visualisation and interactivity features,

many participants stated that the features would be helpful for

beginners. A user suggested testing the web application on high

school students. More accurate results would be obtained when

testing the features with First-year students who have just arrived

at university and have no coding experience. High school students

are also ideal participants for the testing.

5.2.5 Participants’ Challenges. Throughout the user testing, many

participants enquired about error messages and about whether the

web application would assist them in getting a better explanation

for their error messages. When navigating through the visualisation

and interactivity features, some users expressed that the step-by-

step highlighting and the interactivity feature would assist them in

the debugging process. From this it can be concluded that one of

the main issues for programmers with the skillset that the

participants have, is error-handling.

5.2.6 Visualisations vs Interactivity. When comparing the ratings

for the Helpfulness of Highlight Feature, Helpfulness of Pop-up

Explanations, and Helpfulness of Interactivity Feature, the

Interactivity feature is seen as being more helpful than the two

visualisation features.

5.2.7 Limitations of the Tool. Students had to be informed in the

advance that the editor does not take in input. Students had to be

informed of this because the first student attempted to write a line

of code that accepted input. Students also expected the code to

allow the importing of modules. The tool also only catered for

Python users.

6 FUTURE WORK

Seeing that multiple students enquired about features that focus on

error messages, a future project could be to improve the error

messages for Online Python Tutor. This feature would also include

providing a potential solution for common errors. Seeing that the

usage of technology, including mobile devices, is continuing to

increase, creating a mobile version of Online Python Tutor could

be a good idea. This would provide individuals with a convenient

way of learning how to program.

7 CONCLUSIONS

Learning how to program is seen as a daunting task for many

individuals, and struggling to grasp the fundamentals results many

individuals giving up on acquiring the skill of programming.

Online Python Tutor is a web application that assists one in learning

how to programme by providing a visualisation tool that maps out

all the changes that occur in the program when a line of code is

executed. This project focused on improving Online Python Tutor

by making it more beginner friendly. In programming, variables

play a crucial in giving someone an idea of what is happening when

programming. As a result of this, the visualisation and interactivity

features of the project focus heavily on variable assignment. The

visualisation tools consist of highlighting variable changes the

visualisation tool and providing explanations for common Python

terminology. The interactivity tool is a testing feature. The

incorporation of these features did prove to helpful and useful,

however, it was found that they would be more beneficial to

individuals who have no experience in programming, unlike the

participants of the project, who had at least 6 months’ worth of

experience in programming. The project found that there is a need

for more basic and comprehensive explanations and learning

material for fundamental python topics. Multiple studies have

proven that when teaching a skill, making use of interactivity is

better than focusing solely on visualisation. When it comes to

helpfulness, the success of the interactivity feature, compared to the

success of the visualisation feature supports the conclusions made

by the past studies.

REFERENCES

[1]

Yirsaw Ayalew, Ethel Tshukudu, and Moemedi Lefoane. 2018. Factors Affecting

Programming Performance of First Year Students at a University in

Botswana. African Journal of Research in Mathematics, Science and Technology

Education 22, 3 (2018), 363-373.

DOI:https://doi.org/10.1080/18117295.2018.1540169

[2]

Imre BENDE. 2022. Data Visualization in Programming Education. Acta Didactica

Napocensia 15, 1 (2022), 52-60. DOI: https://doi.org/10.24193/adn.15.1.5

[3]

Anabela Gomes and António José Mendes. 2007. An environment to improve

programming education. In Proceedings of the 2007 international conference on

Computer systems and technologies (CompSysTech '07). Association for Computing

Machinery, New York, NY, USA, Article 88, 1–6. https://doi-

org.ezproxy.uct.ac.za/10.1145/1330598.1330691

[4]

Emma Riese and Stefan Stenbom. 2023. Engineering Students’ Experiences of

Assessment in Introductory Computer Science Courses. IEEE Transactions on

Education 66, 4 (2023), 350-359. DOI:https://doi.org/10.1109/te.2023.3238895

[5]

Prasad, A. et al. (2022) Programming skills: Visualization, interaction, home

language and problem solving. Education and information technologies. [Online] 27

(3), 3197–3223

[6]

Monika Mladenović, Žana Žanko, and Marin Aglić Čuvić. 2020. The impact of using

program visualization techniques on learning basic programming concepts at the K–

12 level. Computer Applications in Engineering Education 29, 1 (2020), 145-159.

DOI:https://doi.org/10.1002/cae.22315

[7]

T. Ball, and S. G. Eick, Software visualization in the large, Computer 29 (1996), no.

4, 33–43.

[8]

C. E. Hmelo, and M. Guzdial, Of black and glass boxes: Scaffolding for doing and

learning, Proc. 1996 Int. Conf. Learn. Sci., Evanston, IL, 1996, pp. 128–134.

[9]

J. Sorva, V. Karavirta, and L. Malmi, A review of generic program visualization

systems for introductory programming education, ACM Trans. Comput. Educ. 13

(2013), no. 4, 1–64

[10]

T. L. Naps et al., Exploring the role of visualization and engagement in computer

science education, SIGCSE Bull. 35 (2002), no. 2, 131–152

[11]

Lawrence, A. W. Empirical Studies of the Value of Algorithm Animation in Algorithm

Understanding. PhD thesis, Department of Computer Science, Georgia Institute of

Technology, 1993

[12]

Philip J. Guo. 2013. Online python tutor: embeddable web-based program

visualization for cs education. In Proceeding of the 44th ACM technical symposium

on Computer science education (SIGCSE '13). Association for Computing

Machinery, New York, NY, USA, 579–584. https://doi-

org.ezproxy.uct.ac.za/10.1145/2445196.2445368

[13]

Juha Sorva and Teemu Sirkiä. 2010. UUhistle: a software tool for visual program

simulation. In Proceedings of the 10th Koli Calling International Conference on

Computing Education Research (Koli Calling '10). Association for Computing

Machinery, New York, NY, USA, 49–54. https://doi-

[14]

Šimoňák, Slavomír..2014 "Using algorithm visualizations in computer science

education" Open Computer Science, vol. 4, no. 3, pp. 183-190.

https://doi.org/10.2478/s13537-014-0215-4

[15]

Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan,

Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz

Wilusz. 2001. A multi-national, multi-institutional study of assessment of

programming skills of first-year CS students. SIGCSE Bull. 33, 4 (December 2001),

125–180. https://doi-org.ezproxy.uct.ac.za/10.1145/572139.57218

[16]

Eric Fouh, Monika Akbar, and Clifford A. Shaffer. 2012. The Role of Visualization in

Computer Science Education. Computers in the Schools 29, 1 (2012), 95-117.

DOI:https://doi.org/10.1080/07380569.2012.651422

[17]Yuan-Fang Li, Paramjit K. Das, and David L. Dowe. 2014. Two decades of Web

application testing—A survey of recent advances. Information Systems 43, (2014), 20-

54. DOI:https://doi.org/10.1016/j.is.2014.02.001

[18]2010. Put unit testing to work in your i programs: testing small programs, or

units, within your applications can lead to big improvements in software quality.

SQL Server Magazine 12. Retrieved September 7, 2023 from https://go-gale-

com.ezproxy.uct.ac.za/ps/i.do?p=AONE&u=unict&id=GALE|A242305314&v=2.1&

it=r

[19] Bo Chang, Renmei Xu, and Tiffany Watt. 2018. The Impact of Colors on

Learning. Retrieved September 15, 2023 from

https://newprairiepress.org/cgi/viewcontent.cgi?article=4001&context=aerc

https://doi.org/10.24193/adn.15.1.5
https://doi-org.ezproxy.uct.ac.za/10.1145/1330598.1330691
https://doi-org.ezproxy.uct.ac.za/10.1145/1330598.1330691
https://doi-org.ezproxy.uct.ac.za/10.1145/2445196.2445368
https://doi-org.ezproxy.uct.ac.za/10.1145/2445196.2445368
https://doi.org/10.2478/s13537-014-0215-4
https://doi-org.ezproxy.uct.ac.za/10.1145/572139.57218
https://go-gale-com.ezproxy.uct.ac.za/ps/i.do?p=AONE&u=unict&id=GALE|A242305314&v=2.1&it=r
https://go-gale-com.ezproxy.uct.ac.za/ps/i.do?p=AONE&u=unict&id=GALE|A242305314&v=2.1&it=r
https://go-gale-com.ezproxy.uct.ac.za/ps/i.do?p=AONE&u=unict&id=GALE|A242305314&v=2.1&it=r

SUPPLEMENTARY INFORMATION

A SYSTEM DESIGN

A.1 Interactivity Feature with Highlighting Component

A.3 Keyword Explanations

A.2 Requirements

Requirement Details Justification

Highlight Feature As the user steps through the code in the

editor, the currently executing line number

should be highlighted in the gutter of the

editor. If the there is a variable in the

current line, that is being declared or

changed, that variable should be

highlighted in the code visualisation tool.

Highlighting is a tool that automatically

draws a learner to the variable being

highlighted. This tool will also allow the

learner to easily detect the variable that

has been changed in the editor as well as

the value it has changed to.

Descriptions of

Keywords

Python basic keywords will have

descriptions which will be displayed in the

editor when the specific keyword is entered.

The keywords that are focused on are

‘print’, ‘if’, ‘elif’, ‘else’, ‘for’ and ‘while’.

Beginners may struggle when determining

which keyword to apply at a specific point

in their code. This feature reminds them

of how each variable is used, as well as

what the correct syntax for the variable is.

Variable Testing As the user steps through their code, they

will be given the option to predict the

variable that will change in the next line, as

well as what the variable will change to.

This allows users to test whether they

understand the effect each line of code has

on variables and the overall program.

B IMPLEMENTATION

B.1 Frontend Architecture

B.2 Extracting Variables and Values

C TESTING AND EVALUATION

C.1 User Survey

0

1

2

3

4

5

6

1 2 3 4 5N
u

m
b

er
 o

f
P

ar
ti

ci
p

n
at

s

Helpfulness (rating from 1-5)

Helpfulness of Highlight
Feature

Interactivity Feedback Graphs

D FINDINGS AND DISCUSSION

D.1 Visualisation Feedback Graphs

0

1

2

3

4

5

6

1 2 3 4 5

N
u

m
b

er
 o

f
P

ar
ti

ci
p

n
at

s

Understandability (rating from 1-5)

Understandability of Highlight
Feature

0

1

2

3

4

5

6

1 2 3 4 5N
u

m
b

er
 o

f
P

ar
ti

ci
p

n
at

s

Understandability (rating from 1-5)

Understandability of Pop-up
descriptions

0

1

2

3

4

5

1 2 3 4 5N
u

m
b

er
 o

f
P

ar
ti

ci
p

n
at

s

Helpfulness (rating from 1-5)

Helpfulness of Pop-up
Explanations

0

1

2

3

4

1 2 3 4 5N
u

m
b

er
 o

f
P

ar
ti

ci
p

n
at

s

Comprehensiveness (rating from 1-5)

Comprehensiveness of
Interactivity Feature

0

1

2

3

4

5

6

1 2 3 4 5N
u

m
b

er
 o

f
P

ar
ti

ci
p

n
at

s

Helpfulness (rating from 1-5)

Helpfulness of Interactivity
Feature

0

1

2

3

4

5

6

1 2 3 4 5N
u

m
b

er
 o

f
P

ar
ti

ci
p

n
at

s

Structure (rating from 1-5)

Structure of Interactivity
Feature

0

1

2

3

4

5

6

1 2 3 4 5N
u

m
b

er
 o

f
P

ar
ti

ci
p

n
at

s

Diffulty (rating from 1-5)

Difficulty of Interactivity
Feature

